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The answer is yes. A fundamental limit exists, which is not strongly applicable to

individual reflections but to a sufficiently large set of reflections such as any set

for structure determination. The limit originates from Poisson statistics which

gives a minimum (average) error. The proposed limit of significance and a

proposed decrease in significance due to data processing are also tested by

monitoring W ¼ hI
1=2
hkl i=h�ðIhklÞi for raw and for Bragg data. Since Poisson

statistics are the lower limit for the experimental standard uncertainties, it is

expected that W < 1 for raw and Bragg data, and that W decreases upon data

processing. W also gives a measure of systematic errors in the experimental data

as W ’ 1 characterizes pure Poisson data, W � 1 is physically impossible for

sufficiently large data sets of unmerged reflections and W < 1 describes the

contamination with systematic errors. Systematic differences depending on the

software used to process the data were found. Also, the frequency distributions

in particular of �(I) values change considerably depending on the data-

processing software used. We have no explanation for these differences in the

distributions of �(I), which lead to distinct changes in the frequency distribution

of the significances I/�(I) compared with the raw data. Another consequence of

Poisson statistics is that lower limits also exist for the agreement factors, the

internal agreement factor and the goodness of fit. These limits depend on the

moments h1=Ioi, hIoi, hI
2
oi and hI1=2

o i of the observed set of intensities Io about the

origin. These agreement factors are theoretically attainable when no systematic

sources of error apply. They may be used in future to construct further measures

of systematic error in experimental data.

1. Introduction

Electromagnetic radiation comes in bunches and exposure

times are always limited; this has important consequences for

the signals from X-ray experiments: a fundamental upper limit

exists for the significance of a large set of reflections. This limit

is induced by Poisson statistics. Poisson statistics also apply to

the variances of neutron diffraction data (Blessing, 1987),

therefore these limits also apply to neutron diffraction

experiments (Jeffrey, 1992). Poisson statistics place measure-

ment errors and intensities on an absolute scale. Individual

reflections respect this limit only when measured with high

redundancy. Owing to stochastic fluctuations a low redun-

dancy may lead to too significant or too insignificant reflec-

tions, such that for large data sets this should average out,

unless weighting schemes systematically suppress part of the

data. It is well known from the literature that the calculation

of variances from small samples of Poisson-distributed

numbers is difficult (see e.g. Haight, 1967, and references

therein). The problem of obtaining a large range of values for

standard uncertainties in repeated measurements of the same

reflection is also a consequence of the Poisson statistics and it

becomes increasingly important the lower the expected mean

intensity value is. This has important consequences for weak

and zero-intensity observations. We propose that the signifi-

cance of a reflection is a property of the reflection itself (when

the intensity of the incoming beam and exposure times are

fixed) and should be invariant under data processing, i.e.

changes in individual reflections that can effectively be

described by an individual scaling factor should also be

applied to the standard uncertainty of the reflection. To be

more precise: the invariance under such scaling transforma-

tions is given when the scaling factors are known to have

arbitrary numerical accuracy. If the scaling factors are affected

by an error, the transformation must lead to decreasing

significances. Data-processing steps involving subtraction as in

the correction for the background signal also decrease the

significance or leave it constant. We test experimental data



with respect to the question whether these are in conflict with

a Poisson distribution and with respect to the question of

conserved or decreasing significance.

2. Data processing

In order to obtain Bragg data from the integrated raw inten-

sities, several processing steps have to be made. First of all, the

background intensity Ibg is usually subtracted from Iraw,

leading to a reduced net intensity Inet,

Inet ¼ Iraw � Ibg: ð1Þ

As this increases1 the variance of the net intensity,

�2
ðInetÞ ¼ �

2
ðIrawÞ þ �

2
ðIbgÞ � �

2
ðIrawÞ; ð2Þ

it reduces the significance I=�ðIÞ of the reflections,

Iraw

�ðIrawÞ
�

Inet

�ðInetÞ
: ð3Þ

The last equation is valid for individual reflections. The equal

sign only holds for a vanishing background. The net intensity

is subject to further transformations, such as Lorentz and

polarization corrections, and of course it must be weighted

with the measurement time. Corrections owing to scattering

by air may also be taken into account. We describe all the

corrections and weightings together in one effective positive

scaling factor k, which may be different for each individual

reflection,

IBragg ¼ kInet: ð4Þ

How does this affect the variances? With a little algebra (see

supplementary material, x3) one obtains from the k-scaled

intensities

�2ðIBraggÞ ¼ k2�2ðInetÞ; ð5Þ

i.e. the standard uncertainties � scale like the intensities. As a

consequence, the significance I/�(I) of a reflection is invariant

under scaling with an exactly known scaling factor. Therefore,

equation (2) can be extended,

Iraw

�ðIrawÞ
�

Inet

�ðInetÞ
¼

IBragg

�ðIBraggÞ
: ð6Þ

Please note that the inverse is also true: when standard

uncertainties are scaled, the intensities have to be scaled with

the same factor. When the reflection is scaled to a time

interval, this introduces additional variances owing to the

uncertainty in measuring the time interval. Equations (5) and

(6) are, in view of these (and more) additional variances, still

too optimistic and should read better as

�2
ðIBraggÞ ¼ k2�2

ðInetÞ þ �
2
x; ð7Þ

where �2
x represents a positive number in which all these

effects are collected. This leads to the following statement: the

individual significance of observations decreases during data

processing or remains constant (at best), but it never increases:

Iraw

�ðIrawÞ
�

Inet

�ðInetÞ
�

IBragg

�ðIBraggÞ
: ð8Þ

This equation holds strongly only when a Bragg intensity is

derived from each individual raw intensity.

In the case of merged reflections the inequality (8) holds for

the arithmetic mean. From everything said so far an upper

limit for the significance can be deduced.

On average, the inequality

�ðIBraggÞ> I
1=2
Bragg ð9Þ

should hold. This is indeed a conservative estimate, as the true

standard uncertainty additionally contains the background

variance and systematic sources of error. For a whole data set

this implies P
hkl

�ðIhklÞ>
P
hkl

I
1=2
hkl : ð10Þ

The inequality is also valid for the arithmetic averages

h�ðIhklÞi> hI
1=2
hkl i; ð11Þ

or, with the abbreviation W,

W ¼
hI

1=2
hkl i

h�ðIhklÞi
< 1: ð12Þ

In words: owing to the Poisson process of photon/neutron

arrivals, the ratio between the mean square root of the inten-

sities and the mean standard uncertainty should be smaller than

1. This is because the square root is the minimum (average)

error and other errors enter additionally. Every error entering

contributes another variance to the total sum of variances.

Obviously, a similar expression,

W2 ¼
hIhkli

h�2ðIhklÞi
< 1; ð13Þ

could be derived in an analogous way. For small data sets with

a large mean intensity, these W values may scatter in a small

region around 1, but for large data sets it is expected that the

W values decrease with decreasing total mean intensity. They

express a statistical relationship, not a causal one. An optimal

value for W and W2 would be close to 1. That equations (10)–

(13) do not hold for individual reflections is also a conse-

quence of the Poisson process. This process does not only

exhibit a large absolute variance, but when the variance is

calculated from a small number of observations it scatters

itself widely. Individual values from small samples may

therefore severely underestimate the true variance (and

others will overestimate it). Equation (13) also provides a

consistency check for the experimental variance like equation

(12). The contents of these two equations, however, are not

independent and the following discussions refer to the analysis

of equation (12). Equation (12) [and (13)] should not only

hold for Bragg data but generally, i.e. also for the raw inten-

sities and their standard uncertainties and each intermediate

step in data processing. With WBragg abbreviating the calcu-
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1 It does not matter whether addition or subtraction takes place, the total
variance always increases as it is a measure of the total uncertainty composed
of individual additive uncertainties.



lation of W according to equation (12) with Bragg intensities

IBragg and Bragg standard uncertainties �BraggðIBraggÞ and Wraw

abbreviating the calculation of W with raw intensities Iraw and

raw standard uncertainties �rawðIrawÞ, the results can be

summarized as

1 � Wraw >WBragg � 0; ð14Þ

which will be tested in x3. The requirement of W being smaller

or equal to one stems from assuming �ðIÞ to be at least equal

to the value from Poisson statistics for the raw data, whereas

the first inequality is a consequence of equations (1) and (2).

2.1. Consequences of the Poisson distribution on the
agreement factors and on the goodness of fit

Under the optimistic assumption that the variance of the

reflections is given only by counting statistics, one can derive

limiting values for the agreement factors and the goodness of

fit. Usually, to calculate R values a model is refined against the

data; model-derived entities are used such as the calculated

structure amplitudes Fcalc (or calculated structure factors

F2
calc ¼ Icalc) for a comparison with the experimental data. For

the purpose of this article we may assume that we have the

‘true’ model with no systematic errors and perfect measure-

ments and machines. All the remaining deviations from the

expected intensity values are then solely due to the Poisson

statistics. Under these conditions the calculated intensities are

identical to the true intensities and it is possible to calculate

expectation values for the agreement factors by using Poisson

statistics. The R factors calculated in this way give an

impression of what can be achieved at best experimentally.

They also give a measure of what fraction of each R value is

due to Poisson statistics. The remaining part must then be due

to other sources of error. Now suppose there exists a perfect

model and perfect data. The perfect data conform completely

to the applied scattering theory. The perfect model is

completely satisfactory and adequate in all electron-density

and thermal-motion respects. Therefore, the data are unbiased

on the true intensities (which are also the calculated inten-

sities),

lim
N!1
hIoi ¼ Ic ð15Þ

with a variance

�2
ðIoÞ ¼ Io: ð16Þ

In this case, the assumption

Fo

�� ��� Fc

�� ���� �� ’ �ðFoÞ ð17Þ

is justified in a statistical sense for a large data set, i.e. it is valid

on average [
PN

i¼1 Fo;i

�� ��� Fc;i

�� ���� �� ’PN
i¼1 �ðFo;iÞ]. The agree-

ment factor R1 is defined according to

R1 ¼

P
Fo

�� ��� Fc

�� ���� ��P
Fo

�� �� : ð18Þ

We use equations (16)–(18) and, from the literature, (19)

(Massa, 1996),

�2
ðFÞ ¼

�2ðIÞ

4F2
; ð19Þ

to derive after a short calculation

R1 ¼
1

2

1

hI
1=2
o i

; ð20Þ

with the mean of the square root of the intensity hI1=2
o i. In real

data sets the variance of the structure factors will be on

average larger. As a consequence, the value for R1 obtained

from equation (20) is a lower limit. wR1 is defined according to

wR1 ¼

P
w Fo

�� ��� Fc

�� ���� ��2P
w Fo

�� ��2
 !1=2

: ð21Þ

Using again equations (16), (17) and (19) gives

wR1 ¼
1

2

P
wP

wIo

� �1=2

; ð22Þ

which can be further simplified to

wR1 ¼
1

2

1

hIoi
1=2

ð23Þ

for w ¼ 1, or for w being any constant. For weights w ¼

1=�2ðIÞ one arrives at

wR1 ¼
1

2
h1=Ioi

1=2; ð24Þ

which is different from equation (23), as in equation (23) the

intensities are averaged first and then the reciprocal is taken.

This leads to wR1jw¼1=�2ðIÞ � wR1jw¼const: by the Cauchy-

Schwarz inequality [see Appendix A for more details; Bron-

stein et al., 2008: equation (1.114b), p. 31]. The appearance of a

zero intensity or a close-to-zero intensity poses no problem in

equation (23), it just lowers the average value, whereas in

equation (24) the average of the reciprocal intensities is

calculated. A single close-to-zero-intensity observation might

significantly increase the total result and zero-intensity

observations must be excluded from the evaluation of equa-

tion (24).

wR2 follows from the definition

wR2 ¼

P
w F2

o � F2
cð Þ

2P
w F2

oð Þ
2

 !1=2

ð25Þ

after setting w ¼ 1 or to any other constant,

wR2jw¼1 ¼
h �Ioð Þ

2
i

hI2
oi

� �1=2

¼
h�2ðIoÞi

hI2
oi

� �1=2

¼
hIoi

hI2
oi

� �1=2

; ð26Þ

i.e. wR2jw¼1 is determined by the square root of the ratio of the

first and the second moment of the intensity distribution about

zero. From equation (25) with w ¼ 1=�2ðIoÞ it follows that
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wR2jw¼1=�2ðIoÞ
¼

1

hIoi
1=2
: ð27Þ

From the definition Rint ¼
P

Io � hIoi
�� ��=P Io with Io � hIoi

�� ��
’ �ðIoÞ and Poisson statistics it follows that

Rint ¼
hI1=2

o i

hIoi
: ð28Þ

Equations (20), (23), (24), (26), (27) and (28) are to be

understood as limiting values, so all real data should result in

values well above these, which are only theoretically attain-

able. The equations are valid only under the optimistic

assumption expressed by equation (16) (which corresponds

to a Poisson distribution) and they state that even with

the absolutely correct electron-density and thermal-motion

models, with a perfect imperfect crystal, and with data not

affected by systematic errors, background signals and so on,

the R values should be larger than zero. The equations also say

that it is reasonable to expect the R values to become smaller

for data sets with low resolution in sin �=�, heavily diffracting

atoms, and long exposure times and low temperatures, as all of

these will increase hIoi. Inversely, the inclusion of a large

amount of weak data leads to increasing R values as these

diverge: limhIoi!0 R ¼ 1.

A similar expression can be derived for the goodness of

fit, S,

S ¼

P
w F2

o � F2
cð Þ

2

n� p

" #1=2

ð29Þ

with weights w, number of reflections n and number of model

parameters p. We set p ¼ 0 to approach the limit in which

deviations from the mean value are caused solely by Poisson

statistics. If again equation (16) is valid and we choose to use

unit weights w ¼ 1, then from the definition follows

S ¼ h�2
ðIoÞi

1=2
¼ hIoi

1=2; ð30Þ

which states that the expected value for the goodness of fit is

the square root of the mean intensity. This can also be used as

a test as to whether or not the data are consistent with a

Poisson distribution since in real data S� hIoi
1=2 is expected,

and if it is found that S< hIoi
1=2 then something is most likely

wrong. It can also be seen from equation (30) that the reso-

lution shell increment of S with unit weights tends to decrease

with the resolution shell as the mean intensity tends to

decrease with increasing resolution in sin �=�.

If w ¼ 1=�2ðIoÞ is chosen in equation (29), it follows that

S � 1. In this case S should also be equal to 1 for sufficiently

large resolution shells, however, a larger deviation from unity

is not only acceptable but expected for the inner resolution

shells. Also, larger deviations are expected the smaller the

sample that S is calculated from, as equation (16) is a statistical

relation that need not hold for a small sample.

3. Tests on experimental data

We used an empirical approach by analyzing a variety of raw

data files and processed reflection data files. The data available

from a raw file from SAINT (Bruker, 2006) correspond to Iraw

(PKSUM), Inet (FI) and �ðInetÞ (SI). Unfortunately, there is no

�ðIrawÞ listed, which would allow for a check in consistency of

the raw data with Poisson statistics. Therefore, we have to

postulate that this consistency is given. However, the entries

‘FI’, which is identified with Inet, and ‘SI’, which is identified

with �ðInetÞ, give the opportunity for a check by calculation of

the mean values of the sums from equation (12). The results

should indicate consistency with Poisson statistics. A ratio

larger than 1 indicates a conflict with Poisson statistics.

According to the preservation of significances, the ratio of the

sums should remain constant or decrease, but not increase,

when proceeding from the net data to the Bragg data. Keeping

the decrease as small as possible is important in order to

extract as much information as possible from the experimental

data. The data were not merged, such that the initial distri-

bution of � values stems from the integration software and

such that the individual � values are kept separate for multiply

observed structure factors. Details of data processing for the

investigated data sets can be taken from the cited references.

We start the discussion of Table 1 with column 4,

hInet=I
1=2
net i. This entry serves two purposes: first it gives the

mean value of the ratio between the net intensity and its

square root for the raw data. This can be interpreted as an

upper limit for the best possible average significance, provided

the intensities are on an absolute scale. Second, the entry also

characterizes the data, hInet=I
1=2
net i ¼ hI

1=2
net i, a number giving

(indirectly) control over scaling. The numbers in this column

vary between 12.097 (data set 6) and 300.936 (data set 3).

These should be compared with those in column 7 with the

heading hIBragg=I
1=2
Braggi. These are the equivalent values for the

processed (Bragg) data as in column 4 for the raw data. The

data were processed with SADABS (upper line) and

SORTAV (lower line), however, the raw data were the same in

each case. It is obvious that the scale of the data processed

with SADABS changes heavily, for example, for data set 1 the

change is from 93.656 for the raw data to 7.681 for data

processed with SADABS and to 102.540 for data processed

with SORTAV, whereas data processed with SORTAV

generally have little changes in the scale. However, this is just

a side observation as a change of scale is perfectly valid, when

the corresponding �ðIÞ values are changed accordingly. This

brings us to the next pair of columns.

Column 2 gives the ratio between the average square root

of the intensity and the average standard uncertainties for the

raw data. This column also serves more than one purpose. First

of all it gives a numerical value which should, for theoretical

reasons, be well below 1. Recall that the variance of a Poisson

distributed number is equal to the � parameter of the Poisson

distribution. From this it follows that the value in column 2

should be close to 1 if only counting statistics apply. On the

other hand, if there are systematic sources of error, the

variance of the Poisson distribution gives a lower limit to the
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true variance. In this case the value in column 2 will drop well

below 1, which is the case for almost all data sets. Secondly,

column 2 can be compared with the corresponding values for

the processed data. These are in column 5. It is expected that

data processing tends to increase h�ðIÞi, which should bring

the ratio further down closer to zero. This is indeed the case

for all data processed with SORTAV apart from data set 5,

where there is a slight increase from 0.939 for the raw data to

0.969 for the processed data. For data set 1 the value drops

from 0.274 for the raw data to 0.238 for the processed data and

for data set 2 from 0.183 to 0.180. For data processed with

SADABS, the ratio increases. For some data sets this increase

is to values far above 1. An increase of W could indicate a

downscaling of �ðIÞ, which would lead to an increase in

significances.

Now an explicit check on the average significance of the

data sets is appropriate. As the calculation of the significance

requires division by �ðIÞ, the average values may be domi-

nated by those reflections which have small standard uncer-

tainties by means of stochastic fluctuations. Therefore, these

average values should be taken with caution. Column 3 gives

the average significance for the raw data. It varies between

13.890 (data set 6) and 64.361 (data set 3). The fact that

systematic sources of error are at work was already seen from

column 2 and it can additionally be deduced from a compar-

ison of the values in columns 3 and 4, which give the mean

significance and the upper limit for the attainable mean

significance given the intensities and provided the data are on

an absolute scale. For all data sets but 5 and 6, the values in

column 4 are larger than those in column 3, as expected. For

data sets 5 and 6 the ratio decreases, which may indicate that

in these data sets the value hInet=�ðInetÞi is dominated by a few

reflections with exceptionally small values for �ðInetÞ. Such

characteristics of the raw data deserve more attention and

systematic treatment, however, this goes beyond the scope of

this work.

In any case, when comparing column 4 with the average

significance of the processed data in column 6 it should drop

or remain constant at best. For all data processed with

SORTAV this is indeed the case. The average significance

always decreases, if sometimes also only slightly. For most data

sets this decrease in the average significance is even larger

for data processed with SADABS. This indicates a loss of

information by data processing with SADABS. There are

seemingly conflicting indicators for these data. An increasing

W ratio might be taken as a hint toward an increased signifi-

cance. This would indeed be the case if all � values were

downscaled by the same factor (or very similar factors).

However, when the average significance is monitored, it

decreases despite the increase of W. It must be concluded that

the distributions either of the I values or of the � values (or

both) have changed upon data processing.

To compare the distributions, histograms of the intensities,

standard uncertainties and resulting significances are plotted

in Fig. 1 for data set 1. Similar figures for data sets 2–9 can be

found in the supplementary material.2 As these properties are

on different scales, they were normalized to unity, i.e. the

maximum value was set to one in order to be able to compare

these.

The first column of Fig. 1 shows the intensity distributions

for raw and processed data. Each data set was rescaled such

that the maximum intensity equals 1. Therefore, the x axis
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Table 1
Mean intensities and mean standard uncertainties, and their ratio for pre-processed unmerged data after integration with SAINT (columns 2, 3 and 4)
and processed unmerged data after SADABS (Bruker, 2008) (columns 5, 6 and 7; first line of each data set) and after SORTAV (Blessing, 1995) (columns
5, 6 and 7; second line of each data set).

Wraw ¼ hI
1=2
net i=h�ðInetÞi and WBragg ¼ hI

1=2
Braggi=h�ðIBraggÞi. Inet and �ðInetÞ have been taken from the raw files. The resolution is approximately 0.8–0.9 Å for all the

data sets. Reflections with � ¼ 0 have been excluded from the calculation of the average values in columns 3 and 6, as have observations with I< 0 in columns 5
and 6, and I � 0 in column 7.

No. Wraw hInet=�ðInetÞi hInet=I
1=2
net i WBragg hIBragg=�ðIBraggÞi hIBragg=I

1=2
Braggi Reference CCDC No.

1 0.274 27.822 93.656 2.187 20.744 7.681 Widjaja et al. (2008) 668189
0.238 26.001 102.540

2 0.183 51.272 265.654 1.429 25.373 13.341 Widjaja et al. (2008) 668187
0.180 50.260 265.480

3 0.203 64.361 300.936 0.934 24.974 20.131 Liang et al. (2005) 252113
0.144 51.168 330.688

4 0.252 29.036 103.123 0.955 13.603 11.006 Kurahashi et al. (2007) 642256
0.197 24.971 116.829

5 0.939 25.337 21.306 1.322 8.518 4.723 Stasch et al. (2009) 726162
0.969 25.023 20.586

6 0.765 13.890 12.097 0.776 5.505 5.316 Stasch et al. (2009) 726161
0.759 13.741 12.101

7 0.171 36.040 200.096 4.295 17.552 2.983 Unpublished
0.114 26.513 214.107

8 0.451 17.376 32.943 1.365 13.135 7.661 Lösgen et al. (2007) 628365
0.450 17.293 32.951

9 0.193 30.715 143.050 1.839 18.301 8.202 Liang et al. (2005) 252114
0.184 30.199 150.199

2 Supplementary data for this paper are available from the IUCr electronic
archives (Reference: SH5117). Services for accessing these data are described
at the back of the journal.



gives the percentage of the maximum intensity, whereas the y

axis gives the number of reflections found in this range. All

three pictures show that almost 100% of the data are found in

the lowest 10% of the intensity range, as almost all of the area

under the graphs is confined to regions very close to zero and

smaller than 0.1 on the x axis. Column 2 shows the corre-

sponding distributions for the standard uncertainties. In both

cases (SADABS and SORTAV) data processing leads to a

shift to lower relative values in the frequency distributions, i.e.

the percentage of large � values is reduced and that of low �
values is increased. No comment is made on the absolute

values. This shift is, however, more distinct for data processed

with SADABS. This more distinct shift leads to a drastic

change in the distributions of significances, in which the

absolute values of I and �ðIÞ also play a role. Column 3 shows

that the frequency distributions for the significances resemble

each other for the raw data (column 3, top) and for the data

processed with SORTAV (column 3, middle), but not for the

frequency distribution for the data processed with SADABS

(column 3, bottom).

This shift in the distribution of significances was indicated by

the coinciding observations of an increase in W, accompanied

by a decrease in hI/�(I)i as given in Table 1. Already a distinct

increase in W is a suspicious incident, as it either indicates an

overall increase of the significances by data processing, which

violates the requirement of decreasing significances, or a

redistribution of either I or �ðIÞ frequency values. The figures

for the other data sets are similar in that the distributions of I,

�ðIÞ and I=�ðIÞ are similar for raw data and for data processed

with SORTAV, but not for data processed with SADABS,

where the distribution of �ðIÞ values changes more distinc-

tively, leading to a completely different frequency distribution

of I=�ðIÞ values.

Please note that the change in the distribution of � values

also leads to a larger fraction of significant negative-intensity

observations. This particular observation and generally the

observation of changes in the frequency distribution of �
values upon data processing may be important with respect to

absolute structure determination, weighting schemes, Bijvoet

differences, normal probability plots, the maximum entropy

method of electron-density reconstruction and the construc-

tion of experimental error models (Hooft et al., 2009). For a

direct comparison of the significances from raw and Bragg

data, we examined the significances of the first 1000 reflections
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Figure 1
Frequency distributions of the intensities (first column), the standard uncertainties (second column) and the significances (third column) for raw data
(first line), Bragg data after processing with SORTAV (second line) and after processing with SADABS (third line) for data set 1. The distributions were
normalized to their maximum value.



of data set 1. For these, the same number of repeatedly

measured reflections was available. The data sets were

brought into the same order with respect to h; k; l and the

significance of the processed data is plotted against the

significance of the raw data in Fig. 2. It should be mentioned

that this order is not unique and therefore different plots can

be generated from the same data. Blue stars mark the

SORTAV versus raw significances, whereas red crosses mark

the SADABS versus raw significances. The black dashed line

corresponds to significances not changing upon data proces-

sing. Marks under this black dashed line depict reflections

with reduced significance, marks above the black dashed line

depict reflections with an increased significance in comparison

to the raw data. The significances from data processed with

SADABS do not exceed a value of roughly 40, whereas the

significances of data processed with SORTAV keep increasing

with increasing significances of the raw data. The reason for

this differences is the shift in the frequency distributions of �.

A scaling of the standard uncertainties with a single scaling

factor for the whole set would leave its normalized frequency

distributions unaffected.

For an independent comparison we extracted reflection files

from the literature (all data were downloaded from the web

site for Acta Crystallographica Section C) and analyzed these

with respect to the inequality equation (12). It was not

possible to monitor the propagation of the significances as raw

files were not available. The data were picked randomly

without detailed prior investigation. The results are compiled

in Table 2. The data differ from the data in Table 1 in the

integration software used and in the data-processing software.

Also, to ensure the applicability of W, the in-house data were

not merged. This is not the case for the data in Table 2, such

that in these cases one cannot immediately conclude from

W � 1 that something must be wrong. Large values of W,

however, still might indicate that an inspection of the raw data

is appropriate.
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Table 2
The mean square root of the Bragg intensity and the mean Bragg standard uncertainty and their ratio W for data taken from the literature.

Different compounds in the same publication are indicated by lower-case italic letters (a, b, c, . . . ) in column 1. A variety of integration software has been used. For
details see the cited literature. Reflections with negative intensity observations and their standard uncertainties have been excluded from the calculations.

No. hI
1=2
Braggi h�ðIBraggÞi W Reference Data reduction/absorption correction

10a 10.1 16.5 0.613 McMahon et al. (2009) SORTAV
10b 8.7 11.4 0.762 SORTAV
10c 8.8 9.1 0.962 SORTAV
10d 9.0 9.1 0.992 SORTAV
11a 11.7 5.3 2.218 von Chrzanowski et al. (2007) SADABS
11b 33.3 139.7 0.239 SORTAV
12a 16.2 15.1 1.075 Coles et al. (2007) SORTAV
12b 22.2 23.1 0.961 SORTAV
12c 32.0 74.1 0.432 SORTAV
13a 12.4 12.7 0.975 Siddiqui et al. (2008) SORTAV
13b 14.4 21.9 0.656 SORTAV
13c 14.1 30.7 0.461 SORTAV
14a 7.5 2.8 2.684 Yasuda et al. (2000) ABSCOR95 (Higashi, 1995)
14b 4.2 5.6 0.754 ABSCOR95 (Higashi, 1995)
14c 7.8 3.2 2.423 ABSCOR95 (Higashi, 1995)
14d 5.1 2.52 2.079 ABSCOR95 (Higashi, 1995)
15a 161.3 797.8 0.202 Lu et al. (2006) ABSCOR98 (Jacobson, 1998)
15b 176.7 970.8 0.182 ABSCOR98 (Jacobson, 1998)
16 17.7 24.8 0.714 Jin & Zhang (2005) ABSCOR98 (Jacobson, 1998)
17a 26.0 22.1 1.180 Bucher et al. (2008) numerical method (Coppens et al., 1965)
17b 26.5 87.3 0.304 numerical method (Coppens et al., 1965)
18 153.3 1359.4 0.113 Tokaychuk et al. (2003) analytical method with X-RED (Stoe & Cie, 1999)
19 34.0 33.0 1.028 Björk et al. (2001) numerical method with JANA98 (Petřı́ček & Dušek, 1997)
20 31.2 67.8 0.460 Zou & Dadachov (2000) numerical method with X-RED (Stoe & Cie, 1997)
21a 9.7 4.0 2.412 Czapik et al. (2010) CrysAlis Red (Oxford Diffraction, 2007)
21b 9.8 4.6 2.140 CrysAlis Pro (Oxford Diffraction, 2009)
22 12.2 26.2 0.465 Howard et al. (2010) CrysAlis Pro (Oxford Diffraction, 2009)
23a 17.2 41.0 0.419 Galicia Aguilar & Bernès (2009) CrysAlis Red (Oxford Diffraction, 2007)
23b 10.1 11.8 0.906 XSCANS (Siemens, 1996)

Figure 2
Significance of processed data versus significance of raw data from the
first 1000 reflections of data set 1. Blue stars: SORTAV versus raw data.
Red crosses: SADABS versus raw data. Black dashed line: significance of
processed data equals the significance of raw data. The data processing
started from the same raw data in both cases.



The values for W scatter between 0.113 (data set 18) and

2.684 (set 14a). Even within one publication and using one

software type, the values may scatter widely, e.g. for data set

14. This might indicate that the data-processing issues

discussed above are not the problem of an individual software

package.

4. Summary, outlook and conclusions

We investigated the propagation of the significance of reflec-

tions from the raw to the Bragg data. We explicitly formulated

the laws of decreasing or constant significance during data

procession and the law of the optimal ratio W ¼ 1. The quality

of the raw data limits the quality of the derived Bragg data.

Although the requirement of decreasing significance might

appear trivial to many readers, it was shown that this is not

necessarily respected when handling real data sets. This holds

for a variety of software, however, more comprehensive and

systematic studies are required.

The inequalities used, like equations (12) or (13), may be

employed in the future to characterize the quality of a data set

separately for raw and Bragg data. In contrast to the Bragg

intensity that theoretically obeys a Skellam distribution

(Haight, 1967), i.e. it is derived from the difference between

two theoretically Poisson distributed numbers corresponding

to the peak intensity and the background intensity, the raw

data are theoretically Poisson distributed, provided no

systematic errors are present. The theoretical R values and

goodness-of-fit value S, derived under the assumption of the

absence of systematic sources of error and vanishing or

negligible background intensity, may also be used as bench-

mark values for real data sets. Deviations from these theore-

tically attainable values indicate the effect of systematic

sources of error, a topic which is of particular and increasing

importance in charge-density studies. Therefore, the main

conclusion is that much more needs to be done to

characterize the quality of raw data and to investigate the

reasons for and the effects of the appearance of systematic

sources of error in the raw data. The present work is an

attempt to establish measures of quality applicable to raw and

to processed data and to find generally accepted rules of data

processing, such as the rule of decreasing significances and

optimal W values.

APPENDIX A
The Cauchy–Schwarz inequality applied to wR1 for
weights w = constant and w = 1/r2(I)

The Cauchy–Schwarz inequality states for N positive numbers

ai, bi, i ¼ 1; :::;N

a1b1 þ a2b2 þ ::: þ anbnð Þ
2
� a2

1 þ a2
2 þ :::þ a2

n

� �
� b2

1 þ b2
2 þ :::þ b2

n

� �
: ð31Þ

Setting a2
i ¼ Ii=N and b2

i ¼ 1=IiN leads to

hIi
1

I

	 

¼

PN
i¼1

a2
i

� � PN
i¼1

b2
i

� �

�
PN
i¼1

aibi

� �2

¼
PN
i¼1

1=N

� �2

¼ 1: ð32Þ

Therefore

1

I

	 

�

1

hIi
; ð33Þ

and consequently

wR1jw¼1=�2ðIÞ � wR1jw¼const: ð34Þ

by equations (23) and (24).
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